DIAPHRAGM VALVE 4” - 8” MODEL 2260
PRESSURE REDUCING/SURGE ANTICIPATION

NORMALLY OPEN VALVE

SPECIFICATIONS:

Operating Pressure: 2 to 200 PSI
Regulating Range: 5-125 PSI
Voltage Operating Range: 22-28 VAC
Low Current Requirement: 0.10 A at 24 VAC
Assembly: Valve comes fully assembled

MATERIALS
End Connections: Flanged 150 ANSI
Stem, Nut & Spring: Stainless Steel
Diaphragm: Nylon-Reinforced Buna-N
Disc: Buna-N
Disc Retainer: Cast Iron
Diaphragm Washer: Cast Iron
Disc Guide Seat: Bronze
Cover Bearing: Bronze

DIMENSIONS & WEIGHTS (NOMINAL)

<table>
<thead>
<tr>
<th>SIZE</th>
<th>MODEL NO.</th>
<th>A (IN)</th>
<th>B (IN)</th>
<th>C (IN)</th>
<th>D (IN)</th>
<th>APPROX SHIP WT IN LBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4”</td>
<td>2260P</td>
<td>10.62</td>
<td>4.50</td>
<td>15.00</td>
<td>15.50</td>
<td>140</td>
</tr>
<tr>
<td>6”</td>
<td>2260Q</td>
<td>13.38</td>
<td>5.50</td>
<td>20.00</td>
<td>19.75</td>
<td>280</td>
</tr>
<tr>
<td>8”</td>
<td>2260R</td>
<td>16.00</td>
<td>6.75</td>
<td>25.38</td>
<td>24.00</td>
<td>500</td>
</tr>
</tbody>
</table>

PRESSURE LOSS (PSI) AT VARIOUS FLOWRATES

<table>
<thead>
<tr>
<th>SIZE</th>
<th>FLOWRATE (GPM)</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
<th>1700</th>
<th>1800</th>
<th>1900</th>
<th>2000</th>
<th>2100</th>
<th>2200</th>
<th>2300</th>
<th>2400</th>
</tr>
</thead>
<tbody>
<tr>
<td>4”</td>
<td></td>
<td>1.0</td>
<td>2.3</td>
<td>4.0</td>
<td>6.3</td>
<td>9.0</td>
<td>12.3</td>
<td>16.0</td>
<td>20.3</td>
<td></td>
</tr>
<tr>
<td>6”</td>
<td>USE 1 PSI</td>
<td>0.8</td>
<td>1.2</td>
<td>1.7</td>
<td>2.3</td>
<td>3.0</td>
<td>3.8</td>
<td>4.7</td>
<td>5.7</td>
<td>6.8</td>
<td>8.0</td>
<td>9.3</td>
<td>10.6</td>
<td>12.1</td>
<td>13.7</td>
<td>15.3</td>
<td>17.1</td>
<td>18.9</td>
<td>20.8</td>
<td>IN THIS RANGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8”</td>
<td>DROP IN THIS RANGE</td>
<td>0.8</td>
<td>1.1</td>
<td>1.4</td>
<td>1.7</td>
<td>2.0</td>
<td>2.4</td>
<td>2.9</td>
<td>3.3</td>
<td>3.8</td>
<td>4.3</td>
<td>4.9</td>
<td>5.5</td>
<td>6.1</td>
<td>6.7</td>
<td>7.4</td>
<td>8.2</td>
<td>15.2</td>
<td>16.2</td>
<td>17.3</td>
<td>18.4</td>
<td>19.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPLICATIONS

The 2260 Pressure Reducing Solenoid Valve offers maximum performance combined with the reliability you have come to expect from Griswold Controls. The valve is intended for use in medium to large irrigation systems and can be used on slopes, banks, and hilly terrain with no performance loss. The 2260 is designed for use as a normally-open master valve.
MODEL NUMBER SELECTION

Select a size (4"=P, 6"=Q, 8"=R)

DESCRIPTION:
- Normally Closed: Energize Solenoid to Open Valve, De-Energize to Close Valve
- Lightning Protected
- Watertight Epoxy Molded Solenoid Coil
- Slow Closing
- Surges Above Setting Are Automatically Relieved
- "No Surge or Hammer" Operation
- Will Throttle Against Flow Without Chatter
- Diaphragm-Disc Assembly Guided by Stainless Steel Stem in All Positions
- Completely Serviceable Without Removing Valve Body from the system

THEORY OF OPERATION

FULL OPEN OPERATION
When pressure in the cover chamber is relieved to a zone of lower pressure, the line pressure at the valve inlet opens the valve, allowing full flow.

TIGHT CLOSING OPERATION
When pressure from the valve inlet is applied to the cover chamber, the valve closes drip-tight.

PRESSURE REDUCTION
When the pressure in the system increases, the regulating pilot restricts the amount of fluid leaving the upper chamber. This causes the diaphragm to decrease the flow through area of the valve, reducing pressure system to its preset point.

PRESSURE COMPENSATION
When the flow demand in the system increases, the regulating pilot allows more fluid to leave the upper chamber. This causes the diaphragm to increase the flow through area of the valve, raising pressure system to its preset point.